
Parallel Programming course. Introduction

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

November 9, 2024

Nizhny Novgorod State University Parallel Programming. Introduction 1 / 18

Contents

1 Introduction to MPI

2 "Hello, World" in MPI

3 Brief API calls overview

4 MPI data distribution

Nizhny Novgorod State University Parallel Programming. Introduction 2 / 18

What is MPI?

MPI (Message Passing Interface) is a standardized and portable
message-passing system, designed to function on a variety of parallel
computing architectures.
Primarily used in high-performance computing (HPC) to allow different
processes to communicate with each other in a distributed memory
environment.

Nizhny Novgorod State University Parallel Programming. Introduction 3 / 18

MPI: library vs standard

Aspect MPI Standard MPI Library
Definition A formal set of specifica-

tions
A concrete software imple-
mentation

Purpose Defines the behavior of
message-passing systems

Provides a runnable imple-
mentation of the standard

Portability Platform-agnostic guide-
lines

Implementations may be
platform-specific

Performance No direct impact on per-
formance

Optimized for different
platforms and hardware

Examples MPI-1, MPI-2, MPI-3,
MPI-4 (specifications)

MPICH, Open MPI, MS
MPI (Microsoft MPI), In-
tel MPI

Table: Key Differences Between MPI Standard and MPI Library

Nizhny Novgorod State University Parallel Programming. Introduction 4 / 18

"Hello, World" in MPI

Listing 1: Basic application written using MPI
1 #include <mpi.h>
2
3 #include <iostream >
4
5 int main(int argc , char** argv) {
6 MPI_Init (&argc , &argv);
7
8 int world_size;
9 MPI_Comm_size(MPI_COMM_WORLD , &world_size);

10
11 int world_rank;
12 MPI_Comm_rank(MPI_COMM_WORLD , &world_rank);
13
14 char processor_name[MPI_MAX_PROCESSOR_NAME];
15 int len_chars;
16 MPI_Get_processor_name(processor_name , &len_chars);
17
18 MPI_Barrier(MPI_COMM_WORLD);
19 std::cout << "Processor = " << processor_name << std::endl;
20 std::cout << "Rank = " << world_rank << std::endl;
21 std::cout << "Number of processors = " << world_size << std::endl;
22
23 MPI_Finalize ();
24 return 0;
25 }
26

Nizhny Novgorod State University Parallel Programming. Introduction 5 / 18

Compiling MPI application

Linux:
mpicc -o hello_mpi hello_mpi.c
Windows:
cl /I"C:\Program Files (x86)\Microsoft SDKs\MPI\Include"
hello_mpi.c /link /LIBPATH:"C:\Program Files (x86)\Microsoft
SDKs\MPI\Lib\x64" msmpi.lib

Nizhny Novgorod State University Parallel Programming. Introduction 6 / 18

Running MPI application

Important! If you run application directly (./hello_mpi) you will not get
expected result!
Linux:
mpirun -n 4 ./hello_mpi
Windows:
mpiexec -n 4 hello_mpi.exe

Nizhny Novgorod State University Parallel Programming. Introduction 7 / 18

MPI initialization: MPI_Init()

int MPI_Init(int *argc, char ***argv)
It initializes the MPI environment and must be called before any other MPI
function.

Listing 2: Basic application written using MPI
1 #include <mpi.h>
2 #include <stdio.h>
3
4 int main(int argc , char** argv) {
5 // Initialize the MPI environment
6 MPI_Init (&argc , &argv);
7
8 ...
9

10 return 0;
11 }
12

Nizhny Novgorod State University Parallel Programming. Introduction 8 / 18

MPI data distribution example

Listing 3: MPI data distribution example
1 #include <mpi.h>
2 #include <stdio.h>
3 int main(int argc , char** argv) {
4 // Initialize the MPI environment
5 MPI_Init (&argc , &argv);
6
7 // Get the number of processes
8 int world_size;
9 MPI_Comm_size(MPI_COMM_WORLD , &world_size);

10
11 // Get the rank of the process
12 int world_rank;
13 MPI_Comm_rank(MPI_COMM_WORLD , &world_rank);
14
15 // Define message
16 int number = 0;
17 if (world_rank == 0) {
18 // If we are rank 0, set number to -1 and send it to process 1
19 number = -1;
20 MPI_Send (&number , 1, MPI_INT , 1, 0, MPI_COMM_WORLD);
21 printf("Process 0 sent number %d to process 1\n", number);
22 } else if (world_rank == 1) {
23 // If we are rank 1, receive the number from process 0
24 MPI_Recv (&number , 1, MPI_INT , 0, 0, MPI_COMM_WORLD , MPI_STATUS_IGNORE);
25 printf("Process 1 received number %d from process 0\n", number);
26 }
27
28 // Finalize the MPI environment
29 MPI_Finalize ();
30 return 0;
31 }
32

Nizhny Novgorod State University Parallel Programming. Introduction 9 / 18

Problems in multiprocessing environment

There are some typical errors that may occur in multiprocessing
environment. Case when there are variables allocated on all processes in
quite common.

Listing 4: Common variables usage example
1 ...
2 int main(int argc , char** argv) {
3 ...
4 // Pay attention to "number" variable
5 int number; // NOTE: in this case data will be created on each process
6 // If you leave this data uninitialized it may lead to an undefined

behavior
7 // on specific processes
8 if (world_rank == 0) {
9 // If we are rank 0, "number" variable will be initialized with -1.

10 // OK here
11 number = -1;
12 MPI_Send (&number , 1, MPI_INT , 1, 0, MPI_COMM_WORLD);
13 printf("Process 0 sent number %d to process 1\n", number);
14 } else if (world_rank == 1) {
15 // If we are rank 1, receive the number from process 0
16 // OK here
17 MPI_Recv (&number , 1, MPI_INT , 0, 0, MPI_COMM_WORLD , MPI_STATUS_IGNORE);
18 printf("Process 1 received number %d from process 0\n", number);
19 } else {
20 // WARNING: If we are rank 2 and more , there is uninitialized "number"

variable!
21 // Potential mistake
22 }
23 ...
24 }
25

Nizhny Novgorod State University Parallel Programming. Introduction 10 / 18

Problems in multiprocessing environment solution?

Example on previous slide may lead to an undefined behavior which is not
obvious.

In case of number of processes <= 2 there is no issue.
In case of number of processes > 2 there is potential gap if we use
number variable afterwards.

How to avoid memory issues?
Do not initialize number variable outside if (create number inside if
scope)
Initialize number variable (e.g. int number = 0;)

Important! This is the only one simple case of potential error in
multiprocessing environment. Pay attention to the safety because
debugging in multiprocessing environment is more challenging that in single
process environment.

Nizhny Novgorod State University Parallel Programming. Introduction 11 / 18

MPI_Send()

int MPI_Send(const void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)
Parameters:

buf: The starting address of the data buffer to be sent.
count: The number of elements in the buffer.
datatype: The type of data being sent (e.g., MPI_INT, MPI_FLOAT).
dest: The rank (ID) of the destination process.
tag: A user-defined message identifier to differentiate messages.
comm: The communicator that defines the group of processes within
which the message is being sent (e.g., MPI_COMM_WORLD).

const void *buf, int count, MPI_Datatype datatype - data array description

Nizhny Novgorod State University Parallel Programming. Introduction 12 / 18

MPI_Recv()

int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)
Parameters:

buf: The starting address of the buffer where the received data will be
stored.
count: The maximum number of elements that the buffer can hold.
datatype: The type of data being received (e.g., MPI_INT,
MPI_FLOAT).
source: The rank of the sending process. Use MPI_ANY_SOURCE to
receive from any process.
tag: The message identifier (tag). Use MPI_ANY_TAG to receive any
message regardless of the tag.
comm: The communicator for the group of processes within which the
message is being received (e.g., MPI_COMM_WORLD).
status: A structure that contains information about the received
message, such as the actual source and tag.
Nizhny Novgorod State University Parallel Programming. Introduction 13 / 18

MPI Communicators

MPI Communicator: A communicator in MPI defines a communication
context, a group of processes that can send and receive messages from one
another. The processes within a communicator are assigned unique ranks,
which are integers that identify each process.
Ranks: Every process within a communicator has a rank, starting from 0.
The rank helps to uniquely identify a process within the communicator.
Groups: A communicator has an associated group of processes. A group is
an ordered set of processes, which MPI uses to determine communication
partners.

Nizhny Novgorod State University Parallel Programming. Introduction 14 / 18

MPI_COMM_WORLD

MPI_COMM_WORLD: The MPI_COMM_WORLD is the default communicator
created when an MPI program starts. It includes all the processes that are
initiated by the MPI runtime.

Every process in the MPI application automatically becomes a part of
MPI_COMM_WORLD, and this communicator is used for most
communication operations in simple MPI programs.
All the processes in the program are assigned a rank in
MPI_COMM_WORLD, starting from 0 to the number of processes minus
one.
MPI_COMM_WORLD allows processes to exchange messages, perform
collective operations (e.g. broadcasting, reducing, scattering, etc.),
and more.

Nizhny Novgorod State University Parallel Programming. Introduction 15 / 18

Performance measurement in MPI: MPI_Wtime()

double MPI_Wtime(void)

MPI_Wtime() is a function provided by the MPI standard to measure
the wall-clock time (in seconds) since some arbitrary point in the past.
This function is often used for performance analysis in parallel
programs to measure the execution time of sections of code.
It returns a double precision floating-point number representing the
current time. The returned time is in seconds.
MPI_Wtime() is local to the process and does not guarantee
synchronization between processes, meaning each process may have a
different starting time reference.

Usage example:
1 double start = MPI_Wtime ();
2 // Code to time
3 double end = MPI_Wtime ();
4 double elapsed = end - start;
5

Documentation reference:
https://www.mpich.org/static/docs/v3.2/www3/MPI_Wtime.html

Nizhny Novgorod State University Parallel Programming. Introduction 16 / 18

https://www.mpich.org/static/docs/v3.2/www3/MPI_Wtime.html

Thank You!

Nizhny Novgorod State University Parallel Programming. Introduction 17 / 18

References

1 MPI Standard https://www.mpi-forum.org/docs/
2 MPICH guides: https://www.mpich.org/documentation/guides/
3 Microsoft MPI: https://learn.microsoft.com/en-us/message-passing-

interface/microsoft-mpi
4 OpenMPI docs: https://www.open-mpi.org/doc/

Nizhny Novgorod State University Parallel Programming. Introduction 18 / 18

https://www.mpi-forum.org/docs/
https://www.mpich.org/documentation/guides/
https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://learn.microsoft.com/en-us/message-passing-interface/microsoft-mpi
https://www.open-mpi.org/doc/

	Introduction to MPI
	"Hello, World" in MPI
	Brief API calls overview
	MPI data distribution

