
Parallel Programming course. MPI (detailed API
overview)

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

November 9, 2024

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 1 / 19



Contents

1 Boost.MPI

2 Advanced Send/Receive API

3 Synchronization

4 Collective operations

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 2 / 19



Boost.MPI

Boost.MPI is a part of the Boost C++ libraries that provides C++
bindings for the Message Passing Interface (MPI).
Boost.MPI makes it easier to write distributed applications in C++ by
wrapping the complex MPI API with C++-friendly abstractions, improving
safety and reducing the amount of boilerplate code.
Key Features of Boost.MPI:

Simplified use of MPI with C++ bindings.
Supports complex data types through Boost.Serialization.
Easier management of distributed tasks and communication.
Compatible with common MPI implementations like MPICH,
OpenMPI, MS MPI, etc.

Note: C API mappting ot Boost.MPI: link
For more details see Boost.MPI docs: link

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 3 / 19

https://www.boost.org/doc/libs/1_86_0/doc/html/mpi/c_mapping.html
https://www.boost.org/doc/libs/1_86_0/doc/html/mpi.html


Boost.MPI example

Listing 1: Hello World example with Boost MPI
1 #include <boost/mpi.hpp >
2 #include <iostream >
3
4 // Namespace alias for convenience
5 namespace mpi = boost ::mpi;
6
7 int main(int argc , char* argv []) {
8 // Initialize the MPI environment
9 mpi:: environment env(argc , argv);

10 mpi:: communicator world;
11
12 // Get the rank (ID) of the current process and the total number of processes
13 int rank = world.rank();
14 int size = world.size();
15
16 if (rank == 0) {
17 // If this is the root process (rank 0), send a message to another process
18 std:: string message = "Hello from process 0";
19 world.send(1, 0, message); // Send to process 1
20 std::cout << "Process 0 sent: " << message << std::endl;
21 } else if (rank == 1) {
22 // If this is process 1, receive the message
23 std:: string received_message;
24 world.recv(0, 0, received_message); // Receive from process 0
25 std::cout << "Process 1 received: " << received_message << std::endl;
26 }
27
28 return 0;
29 }
30

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 4 / 19



Why Using MPI_Send and MPI_Recv Is Not Enough?

Blocking Operations MPI_Send and MPI_Recv are blocking, causing
processes to wait until communication completes. So they are the reason
of:

Performance Bottlenecks: Blocking calls can lead to idle CPU time,
reducing parallel efficiency.
Lack of Overlap: Cannot overlap computation with communication,
limiting optimization opportunities.
Scalability Issues: As the number of processes increases, blocking
operations can significantly degrade performance.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 5 / 19



MPI_Isend

Non-Blocking Send function. Initiates a send operation that returns
immediately.
int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request);

boost::mpi::request boost::mpi::communicator::isend(int dest, int tag,

const T* values, int n);

Parameters:
buf: Initial address of send buffer
count: Number of elements to send
datatype: Data type of each send buffer element
dest: Rank of destination process
tag: Message tag
comm: Communicator
request: Communication request handle

Usage: Allows the sender to proceed with computation while the message is being sent.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 6 / 19



MPI_Irecv

Non-Blocking Receive function. Initiates a receive operation that returns
immediately.
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request);

boost::mpi::request boost::mpi::communicator::irecv(int source, int tag,

T& value);

Parameters:
buf: Initial address of receive buffer
count: Maximum number of elements to receive
datatype: Data type of each receive buffer element
source: Rank of source process or MPI_ANY_SOURCE
tag: Message tag or MPI_ANY_TAG
comm: Communicator
request: Communication request handle

Usage: Allows the receiver to proceed with computation while waiting for the message.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 7 / 19



What is synchronization in MPI?

Synchronization mechanisms are essential to coordinating processes.
Sometimes we need to ensure that particular action has been already
completed.
Synchronization facts:

Process Coordination: Mechanism to ensure processes reach a certain
point before proceeding
Data Consistency: Ensures all processes have consistent data before
computations
Types of Synchronization:

Point-to-point synchronization: It involves explicit sending and
receiving of messages between two processes using functions like
MPI_Send and MPI_Recv
Collective synchronization: Collective operations (see next slides) are
used, where all processes must participate

Importance: Prevents race conditions and ensures program correctness

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 8 / 19



MPI_Barrier

Global Synchronization function. It blocks processes until all of them have
reached the barrier.
int MPI_Barrier(MPI_Comm comm);

void boost::mpi::communicator::barrier();

Usage:
Ensures all processes have completed preceding computations
Commonly used before timing code segments for performance
measurement
Typical use case: Synchronize before starting a collective operation

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 9 / 19



Collective operations

Operations involving all processes within a communicator.
Characteristics:

Implicit synchronization among processes.
Cannot be initiated between subsets unless a new communicator is
created.

Examples:
Data movement operations (e.g., MPI_Bcast, MPI_Gather).
Reduction operations (e.g., MPI_Reduce, MPI_Allreduce).

Benefits (why use them instead of send/recv?):
Optimized for underlying hardware and common user scenarios.
Simplifies code and improves readability.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 10 / 19



Broadcast (MPI_Bcast)

Send data from one process to all other processes.
int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm);

void broadcast(const communicator& comm, T& value, int root); (needs
#include <boost/mpi/collectives.hpp>)
Parameters:

buffer: Starting address of buffer.
count: Number of entries in buffer.
datatype: Data type of buffer elements.
root: Rank of broadcast root.
comm: Communicator.

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 11 / 19

https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html


Reduction (MPI_Reduce)

Perform a global reduction operation (e.g., sum, max) across all processes.
Calculate the total sum of values distributed across processes.
Can be seen as the opposite operation to broadcast.
int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm);

void reduce(const communicator& comm, const T& in_value, T& out_value,

Op op, int root); (needs #include <boost/mpi/collectives.hpp>)
Supported op-
erations:

MPI_SUM

MPI_PROD

MPI_MAX

MPI_MIN

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html
Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 12 / 19

https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html


MPI_Gather

Collect data from all processes to a single root process.
int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm);

void gather(const communicator& comm, const T& in_value, std::vector<T>&

out_values, int root); (needs #include <boost/mpi/collectives.hpp>)
Parameters:

sendbuf: Starting address of send buffer.
recvbuf: Starting address of receive
buffer (significant only at root).

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 13 / 19

https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html


MPI_Scatter

Distribute distinct chunks of data from root to all processes.
int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm);

void scatter(const communicator& comm, const std::vector<T>& in_values,

T& out_value, int root); (needs #include <boost/mpi/collectives.hpp>)
Parameters:

sendbuf: Starting address of send
buffer (significant only at root).
recvbuf: Starting address of receive
buffer.

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 14 / 19

https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html


MPI_AllGather

Gather data from all processes and distributes the combined data to all
processes.
int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm
comm);

void all_gather(const communicator& comm, const T& in_value,

std::vector<T>& out_values); (needs #include <boost/mpi/collectives.hpp>)
Usage of this function reduces the need for separate gather and broadcast
operations.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 15 / 19



All-to-All (MPI_Alltoall)

Description: Each process sends data to and receives data from all other
processes. It can be seen as transposing a matrix distributed across
processes.
int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm
comm);

void all_to_all(const communicator& comm, const std::vector<T>&

in_values, std::vector<T>& out_values); (needs #include
<boost/mpi/collectives.hpp>)
Note: This operation is communication-intensive.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 16 / 19



All API have not blocking versions

Non-Blocking collectives operations allow overlapping communication with
computation.
Examples:

MPI_Ibcast: Non-blocking broadcast.
MPI_Ireduce: Non-blocking reduction.
MPI_Iallgather: Non-blocking all-gather.

int MPI_Ibcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm, MPI_Request *request);
int MPI_Ireduce(const void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
comm, MPI_Request *request);
Usage flow is the same as for MPI_Isend/MPI_Irecv: Initiate the
operation and later wait for its completion using MPI_Wait or MPI_Test.

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 17 / 19



Thank You!

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 18 / 19



References

1 MPI Standard https://www.mpi-forum.org/docs/
2 Boost.MPI Chapter in Boost documentation

https://www.boost.org/doc/libs/1_86_0/doc/html/mpi.html
3 Open MPI v4.0.7 documentation:

https://www.open-mpi.org/doc/v4.0/

Nizhny Novgorod State University Parallel Programming. MPI (detailed API overview) 19 / 19

https://www.mpi-forum.org/docs/
https://www.boost.org/doc/libs/1_86_0/doc/html/mpi.html
https://www.open-mpi.org/doc/v4.0/

	Boost.MPI
	Advanced Send/Receive API
	Synchronization
	Collective operations

