Parallel Programming course. MPI (detailed API

overview)

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

November 9, 2024

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 1/19



Contents

© Boost.MPI

© Advanced Send/Receive API

© Synchronization

@ Collective operations

Nizhny Novgorod State University

Parallel Programming. MPI (detailed APl overview)

2/ 19



Boost. MPI

Boost.MPl is a part of the Boost C++ libraries that provides C++
bindings for the Message Passing Interface (MPI).

Boost.MPI| makes it easier to write distributed applications in C++ by
wrapping the complex MPI API with C++-friendly abstractions, improving
safety and reducing the amount of boilerplate code.

Key Features of Boost.MPI:

e Simplified use of MPI with C++ bindings.
@ Supports complex data types through Boost.Serialization.
@ Easier management of distributed tasks and communication.

e Compatible with common MPI implementations like MPICH,
OpenMPI, MS MPI, etc.

Note: C API mappting ot Boost.MPI: link

For more details see Boost.MPI docs: link

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 3/19


https://www.boost.org/doc/libs/1_86_0/doc/html/mpi/c_mapping.html
https://www.boost.org/doc/libs/1_86_0/doc/html/mpi.html

CONOUTAWN

Boost.MPI example

Listing 1: Hello World example with Boost MPI

#include <boost/mpi.hpp>
#include <iostream>

// Namespace alias for convenience
namespace mpi = boost::mpi;

int main(int argc, charx argv[]) {
// Initialize the MPI environment
mpi nvironment env(argc, argv);
mpi communicator world;

// Get the rank (ID) of the current process and the total number of processes

int rank = world.rank();
int size = world.size();
if (rank == 0) {
// If this is the root process (rank 0), send a message to another process
std::string message = "Hello from process 0";
world.send (1, O, message); // Send to process 1
std::cout << "Process 0 sent: " << message << std::endl;
} else if (rank == 1) {

// If this is process 1, receive the message

std::string received_message;

world.recv(0, 0O, received_message); // Receive from process 0
std::cout << "Process 1 received: " << received_message << std::endl;

}

return 0;

Nizhny Novgorod State University Parallel Programmi MPI (detailed API overview)

4/19



Why Using MPI_Send and MPI_Recv Is Not Enough?

Blocking Operations MPI_Send and MPI_Recv are blocking, causing
processes to wait until communication completes. So they are the reason

of:
o Performance Bottlenecks: Blocking calls can lead to idle CPU time,
reducing parallel efficiency.
e Lack of Overlap: Cannot overlap computation with communication,
limiting optimization opportunities.
@ Scalability Issues: As the number of processes increases, blocking
operations can significantly degrade performance.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 5 /19



MPI_ TIsend

Non-Blocking Send function. Initiates a send operation that returns

immediately.
int MPI_Isend(const void *buf, int count, MPI_Datatype datatype, int
dest, int tag, MPI_Comm comm, MPI_Request *request);

boost: :mpi::request boost::mpi::communicator::isend(int dest, int tag,
const T* values, int n);

Parameters:
@ buf: Initial address of send buffer
@ count: Number of elements to send
datatype: Data type of each send buffer element

dest: Rank of destination process

°
o tag: Message tag

@ comm: Communicator

@ request: Communication request handle

Usage: Allows the sender to proceed with computation while the message is being sent.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 6 /19



MPI _TIrecv

Non-Blocking Receive function. Initiates a receive operation that returns

immediately.
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request);

boost: :mpi::request boost::mpi::communicator::irecv(int source, int tag,
T& value);
Parameters:

@ buf: Initial address of receive buffer

count: Maximum number of elements to receive
datatype: Data type of each receive buffer element
source: Rank of source process or MPI_ANY_SOURCE
tag: Message tag or MPI_ANY_TAG

comm: Communicator

request: Communication request handle
Usage: Allows the receiver to proceed with computation while waiting for the message.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 7/ 19



What is synchronization in MPI?

Synchronization mechanisms are essential to coordinating processes.
Sometimes we need to ensure that particular action has been already
completed.
Synchronization facts:
@ Process Coordination: Mechanism to ensure processes reach a certain
point before proceeding
o Data Consistency: Ensures all processes have consistent data before
computations
@ Types of Synchronization:
e Point-to-point synchronization: It involves explicit sending and
receiving of messages between two processes using functions like
MPI_Send and MPI_Recv

o Collective synchronization: Collective operations (see next slides) are
used, where all processes must participate

@ Importance: Prevents race conditions and ensures program correctness

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 8/ 19



MPI _Barrier

Global Synchronization function. It blocks processes until all of them have

reached the barrier.
int MPI_Barrier (MPI_Comm comm) ;

void boost::mpi::communicator::barrier();
Usage:
@ Ensures all processes have completed preceding computations

e Commonly used before timing code segments for performance
measurement

@ Typical use case: Synchronize before starting a collective operation

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 9/ 19



Collective operations

Operations involving all processes within a communicator.
Characteristics:

@ Implicit synchronization among processes.

@ Cannot be initiated between subsets unless a new communicator is
created.

Examples:

e Data movement operations (e.g., MPI_Bcast, MPI_Gather).

@ Reduction operations (e.g., MPI_Reduce, MPI_Allreduce).
Benefits (why use them instead of send/recv?):

@ Optimized for underlying hardware and common user scenarios.

@ Simplifies code and improves readability.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview)



Broadcast (MPI_Bcast)

Send data from one process to all other processes.

int MPI_Bcast(void *buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm) ;

void broadcast(const communicator& comm, T& value, int root); (needs
#include <boost/mpi/collectives.hpp>)
Parameters:

@ buffer: Starting address of buffer.

@ count: Number of entries in buffer. - -
e datatype: Data type of buffer elements. -\-
@ root: Rank of broadcast root.

@ comm: Communicator. - -

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective /index.html

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 11 /19


https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

Reduction (MPI_Reduce)

Perform a global reduction operation (e.g., sum, max) across all processes.
Calculate the total sum of values distributed across processes.

Can be seen as the opposite operation to broadcast.
int MPI_Reduce(const void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm) ;

void reduce(const communicator& comm, const T& in_value, T& out_value,
Op op, int root); (needs #include <boost/mpi/collectives.hpp>)
Supported op-
erations:
o MPI_SUM
e MPI_PROD
e MPI_MAX

e MPI_MIN



https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

_Gather

Collect data from all processes to a single root process.

int MPI_Gather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm) ;

void gather(const communicator& comm, const T& in_value, std::vector<T>&

out_values, int root); (needs #include <boost/mpi/collectives.hpp>)

Parameters:

e sendbuf: Starting address of send buffer.

@ recvbuf: Starting address of receive
buffer (significant only at root).

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 13 /19


https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

MPI_Scatter

Distribute distinct chunks of data from root to all processes.
int MPI_Scatter(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm) ;
void scatter(const communicator& comm, const std::vector<T>& in_values,

T& out_value, int root); (needs #include <boost/mpi/collectives.hpp>)
@ sendbuf: Starting address of send

buffer (significant only at root). - -

@ recvbuf: Starting address of receive \

buffer.

Parameters:

Source: https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 14 / 19


https://pdc-support.github.io/introduction-to-mpi/07-collective/index.html

MPI_Al1Gather

Gather data from all processes and distributes the combined data to all

processes.

int MPI_Allgather(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm
comm) ;

void all_gather(const communicator& comm, const T& in_value,

std: :vector<T>& out_values); (needs #include <boost/mpi/collectives.hpp>)
Usage of this function reduces the need for separate gather and broadcast
operations.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 15 / 19



All-to-All (MPI_Alltoall)

Description: Each process sends data to and receives data from all other
processes. It can be seen as transposing a matrix distributed across

processes.

int MPI_Alltoall(const void *sendbuf, int sendcount, MPI_Datatype
sendtype, void *recvbuf, int recvcount, MPI_Datatype recvtype, MPI_Comm
comm) ;

void all_to_all(const communicator& comm, const std::vector<T>&
in_values, std::vector<T>& out_values); (needs #include
<boost/mpi/collectives.hpp>)

Note: This operation is communication-intensive.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 16 / 19



All API have not blocking versions

Non-Blocking collectives operations allow overlapping communication with
computation.
Examples:

@ MPI_Ibcast: Non-blocking broadcast.

@ MPI_Ireduce: Non-blocking reduction.

@ MPI_Tallgather: Non-blocking all-gather.
int MPI_Ibcast(void *buffer, int count, MPI_Datatype
datatype, int root, MPI_Comm comm, MPI_Request *request);
int MPI_Ireduce(const void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
comm, MPI_Request *request);
Usage flow is the same as for MPI_Isend/MPI_Irecv: Initiate the
operation and later wait for its completion using MPI_Wait or MPI_Test.

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 17 / 19



Thank You!

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 18 / 19




References

@ MPI Standard https://www.mpi-forum.org/docs/

@ Boost.MPI Chapter in Boost documentation
https://www.boost.org/doc/libs/1 86 0/doc/html/mpi.html

© Open MPI v4.0.7 documentation:
https://www.open-mpi.org/doc/v4.0/

Nizhny Novgorod State University Parallel Programming. MPI (detailed APl overview) 19 / 19


https://www.mpi-forum.org/docs/
https://www.boost.org/doc/libs/1_86_0/doc/html/mpi.html
https://www.open-mpi.org/doc/v4.0/

	Boost.MPI
	Advanced Send/Receive API
	Synchronization
	Collective operations

