
Parallel Programming course. Parallelism theory

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

November 9, 2024

Nizhny Novgorod State University Parallel Programming. Parallelism theory 1 / 13



Contents

1 Parallelism efficiency metrics

2 Amdahl’s Law

3 Gustafson’s Law (Gustafson-Barsis’s Law)

Nizhny Novgorod State University Parallel Programming. Parallelism theory 2 / 13



Parallelism efficiency metrics

Let us introduce a number of terms used in parallel programming theory:
Speedup (S): Ratio of the execution time of the best sequential
algorithm to the execution time of the parallel algorithm.

S =
T1

Tp

Efficiency (E): Measure of how effectively the computational
resources are being utilized.

E =
S

p
=

T1

p × Tp

Scalability: Ability of a system to maintain performance when the
number of processors increases.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 3 / 13



Amdahl’s Law

Amdahl’s Law addresses the maximum improvement to an overall system
when only part of the system is improved.

Formula:
Smax =

1
(1 − P) + P

N

Where:
P is the proportion of the program that can be made parallel.
N is the number of processors.

Implications:
Diminishing returns as N increases.
Emphasizes optimizing the sequential portion.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 4 / 13



Amdahl’s Law example

Assuming 90% of a task can be parallelized (P = 0.9) and we have 4
processors (N = 4):
Formula:

Smax =
1

(1 − P) + P
N

Calculating for this particular example:

S =
1

(1 − 0.9) + 0.9
4

=
1

0.1 + 0.225
=

1
0.325

≈ 3.08

So, even though we have 4 processors, the speedup is only about 3.08
times faster than a single processor due to the non-parallelizable
portion.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 5 / 13



Amdahl’s Law assumptions and limitations

Note that:
Amdahl’s Law assumes that the overhead of splitting and managing
parallel tasks is (infinitely) small, which may not always be true.
It doesn’t account for other practical factors like memory access
contention, communication delays between processors, or the
complexity of load balancing.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 6 / 13



Gustafson’s Law (Gustafson-Barsis’s Law)

Gustafson’s Law, also known as Gustafson-Barsis’s Law is a principle in
parallel computing that addresses the scalability of parallel systems.

Key note: Gustafson’s Law suggests that the overall speedup in a
parallel system is determined not only by the fraction of the task that
can be parallelized but also by the size of the problem being solved.
As the problem size increases, the potential speedup from parallelism
also increases.
Formula:

S(p) = p − α(p − 1)

Where:
S(p) is the speedup with p processors.
α is the fraction of the workload that must be executed serially (i.e.,
non-parallelizable).
p is the number of processors.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 7 / 13



Gustafson’s Law notes

Note that:
Unlike Amdahl’s Law, Gustafson’s Law argues that by increasing the
size of the problem, the parallel portion can dominate, allowing for
more effective use of additional processors.
Gustafson’s Law is more realistic in situations where the problem size
increases with the number of processors.
As the problem size grows, the portion that can be parallelized
becomes larger, thus maximizing the benefit of adding more
processors.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 8 / 13



Parallelism overhead

Basically, parallelism overhead is the extra time that is required to manage
parallel tasks.
Sources of overhead:

Communication between processors.
Synchronization delays.
Data sharing and contention.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 9 / 13



Best Practices for Efficient Parallelism

Minimize synchronization and communication.
Balance load among processors.
Optimize data locality.
Use appropriate parallel programming constructs.

Nizhny Novgorod State University Parallel Programming. Parallelism theory 10 / 13



Flynn’s Classification

Categorizes computer architectures based on instruction and data streams.
Single Instruction (SI) Multiple Instructions

(MI)
Single Data
(SD)

Traditional single-core pro-
cessors

Fault-tolerant systems
(e.g. space shuttle control
systems)

Multiple
Data (MD)

Vector instruction in CPU,
Graphics Processing Units
(GPUs)

Multi-core processors, Dis-
tributed computing sys-
tems

Nizhny Novgorod State University Parallel Programming. Parallelism theory 11 / 13



Thank You!

Nizhny Novgorod State University Parallel Programming. Parallelism theory 12 / 13



References

Nizhny Novgorod State University Parallel Programming. Parallelism theory 13 / 13


	Parallelism efficiency metrics
	Amdahl's Law
	Gustafson's Law (Gustafson-Barsis's Law)

