
Parallel Programming course. Parallelism practice

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

November 9, 2024

Nizhny Novgorod State University Parallel Programming. Parallelism practice 1 / 25

Contents

1 Tasks

2 Classical Tasks of Parallel Programming

3 Data Transfer Methods

4 Topologies

5 Matrix Multiplication

6 Systems of Linear Algebraic Equations

7 Sort

8 Image Processing

Nizhny Novgorod State University Parallel Programming. Parallelism practice 2 / 25

Full list of tasks
Producer-Consumer Problem
Readers-Writers Problem
Dining Philosophers Problem
Sleeping Barber Problem
Broadcast (one-to-all communication)
Reduce (all-to-one communication)
Allreduce (all-to-one communication and broadcast)
Scatter (generalized one-to-all communication)
Gather (generalized all-to-one communication)
Topology: Line
Topology: Ring
Topology: Star
Topology: Torus Grid
Topology: Hypercube
Horizontal Strip Scheme
Vertical Strip Scheme
Horizontal Strip Scheme (only matrix A partitioned)
Horizontal Strip Scheme for A, Vertical Strip Scheme for B
Gaussian Method - Horizontal Strip Scheme
Gaussian Method - Vertical Strip Scheme
Gauss-Jordan Method
Iterative Methods (Jacobi)
Iterative Methods (Gauss-Seidel)
Simple Iteration Method
Bubble Sort (Odd-Even Transposition Sort)
Image Smoothing
Contrast Enhancement

Nizhny Novgorod State University Parallel Programming. Parallelism practice 3 / 25

Tasks

Tasks in the course are split into the following subgroups:
Classical Tasks of Parallel Programming
Data Transfer Methods
Topologies
Matrix Multiplication
Systems of Linear Algebraic Equations
Sort
Image Processing

Nizhny Novgorod State University Parallel Programming. Parallelism practice 4 / 25

Disclaimers

All matrices should be stored in linear arrays (not
std::vector<std::vector<int> >)
Performance should be measured on big matrices/vectors
Total execution time (per test) is more than 1 second
Functionality should be preserved for wide range of processes count

Nizhny Novgorod State University Parallel Programming. Parallelism practice 5 / 25

Classical Tasks of Parallel Programming

Producer-Consumer Problem
Readers-Writers Problem
Dining Philosophers Problem
Sleeping Barber Problem

Warning: There is different testing mechanism. Time is not measured for
these tasks. Tasks are measured with big number of processes (16+, up to
physical limit)

Nizhny Novgorod State University Parallel Programming. Parallelism practice 6 / 25

Producer-Consumer Problem

We have multiple processes: several producers and several consumers.
Producer produces the data, consumer needs to read it.
The producer-consumer problem is a classic synchronization scenario where
one or more producers generate data and place it into a buffer, and one or
more consumers remove data from the buffer for processing. The challenge
is to ensure that producers do not add data into a full buffer and
consumers do not remove data from an empty buffer, all while maintaining
data integrity and synchronization.
In the context of MPI we can implement the producer-consumer problem
by using message passing between processes.
Source: https://en.wikipedia.org/wiki/Producer–consumer_problem

Nizhny Novgorod State University Parallel Programming. Parallelism practice 7 / 25

https://en.wikipedia.org/wiki/Producer\T1\textendash consumer_problem

Readers-Writers Problem

Some processes may read and some may write, with the constraint that no
process may access the shared resource for either reading or writing while
another process is in the act of writing to it.
A readers-writer lock is a data structure that solves one or more of the
readers-writers problems.
Source: https://en.wikipedia.org/wiki/Readers–writers_problem

Nizhny Novgorod State University Parallel Programming. Parallelism practice 8 / 25

https://en.wikipedia.org/wiki/Readers\T1\textendash writers_problem

Dining Philosophers Problem

Five philosophers dine together at the same table. Each philosopher has
their own plate at the table. There is a fork between each plate. The dish
served is a kind of spaghetti which has to be eaten with two forks. Each
philosopher can only alternately think and eat. Moreover, a philosopher can
only eat their spaghetti when they have both a left and right fork. Thus
two forks will only be available when their two nearest neighbors are
thinking, not eating. After an individual philosopher finishes eating, they
will put down both forks. The problem is how to design a regimen (a
concurrent algorithm) such that any philosopher will not starve; i.e., each
can forever continue to alternate between eating and thinking, assuming
that no philosopher can know when others may want to eat or think (an
issue of incomplete information).
Source: https://en.wikipedia.org/wiki/Dining_philosophers_problem

Nizhny Novgorod State University Parallel Programming. Parallelism practice 9 / 25

https://en.wikipedia.org/wiki/Dining_philosophers_problem

Sleeping barber problem

Imagine a hypothetical barbershop with one barber, one barber chair, and a
waiting room with n chairs (n may be 0) for waiting customers. The
following rules apply:

If there are no customers, the barber falls asleep in the chair
A customer must wake the barber if he is asleep
If a customer arrives while the barber is working, the customer leaves
if all chairs are occupied and sits in an empty chair if it’s available
When the barber finishes a haircut, he inspects the waiting room to
see if there are any waiting customers and falls asleep if there are none

Source: https://en.wikipedia.org/wiki/Sleeping_barber_problem

Nizhny Novgorod State University Parallel Programming. Parallelism practice 10 / 25

https://en.wikipedia.org/wiki/Sleeping_barber_problem

Data Transfer Methods

Broadcast (one-to-all communication)
Reduce (all-to-one communication)
Allreduce (all-to-one communication and broadcast)
Scatter (generalized one-to-all communication)
Gather (generalized all-to-one communication)

Nizhny Novgorod State University Parallel Programming. Parallelism practice 11 / 25

Data Transfer Methods: details

There is no specific task for this section. You should come up with your
own:

Requirement: Put the task you have chosen in the description
Reference implementation: original MPI function
Tasks size should be big. Broadcast should send more that one
element (vector)
Consider using binary trees to distribute data across different processes

Nizhny Novgorod State University Parallel Programming. Parallelism practice 12 / 25

Topologies

Topology: Line
Topology: Ring
Topology: Star
Topology: Torus Grid
Topology: Hypercube

Warning: There is different testing mechanism. Time is not measured for
these tasks. Tasks are measured with big number of processes (16+, up to
physical limit)
Data is transferred from process 0

Nizhny Novgorod State University Parallel Programming. Parallelism practice 13 / 25

Line topology

Nizhny Novgorod State University Parallel Programming. Parallelism practice 14 / 25

Ring topology

Nizhny Novgorod State University Parallel Programming. Parallelism practice 15 / 25

Star topology

Nizhny Novgorod State University Parallel Programming. Parallelism practice 16 / 25

Torus Grid topology

Nizhny Novgorod State University Parallel Programming. Parallelism practice 17 / 25

Hypercube topology

Source: https://en.wikipedia.org/wiki/Hypercube_internetwork_topology

Nizhny Novgorod State University Parallel Programming. Parallelism practice 18 / 25

https://en.wikipedia.org/wiki/Hypercube_internetwork_topology

Matrix Multiplication

Horizontal Strip Scheme
Vertical Strip Scheme
Horizontal Strip Scheme (only matrix A partitioned)
Horizontal Strip Scheme for A, Vertical Strip Scheme for B

Expected perf gain: Validate shapes (if matmul is possible for these shapes)

Nizhny Novgorod State University Parallel Programming. Parallelism practice 19 / 25

Matrix Multiplication

Nizhny Novgorod State University Parallel Programming. Parallelism practice 20 / 25

Systems of Linear Algebraic Equations

Gaussian Method - Horizontal Strip Scheme
Gaussian Method - Vertical Strip Scheme
Gauss-Jordan Method
Iterative Methods (Jacobi)
Iterative Methods (Gauss-Seidel)
Simple Iteration Method

Generate matrix that fits conditions Validate:
Determinant, ... (you can use boost library for validation step)
Use data that produces only 1 solution
For the last 3 tasks, check convergence conditions (otherwise there
will be an infinite loop)

Iterative methods: max 10%, you can parallelize only inside iteration

Nizhny Novgorod State University Parallel Programming. Parallelism practice 21 / 25

Sort

Bubble Sort (Odd-Even Transposition Sort)
Notes:

Do not use std::sort for time comparison!
Validation of functionality is OK

Nizhny Novgorod State University Parallel Programming. Parallelism practice 22 / 25

Image Processing

Image Smoothing
Contrast Enhancement

Notes:
Use RGB/BGR (color) linearized matrix
Allowed to verify functionality using boost
Compare time metric with sequential implementation

Nizhny Novgorod State University Parallel Programming. Parallelism practice 23 / 25

Thank You!

Nizhny Novgorod State University Parallel Programming. Parallelism practice 24 / 25

References

Nizhny Novgorod State University Parallel Programming. Parallelism practice 25 / 25

	Tasks
	Classical Tasks of Parallel Programming
	Data Transfer Methods
	Topologies
	Matrix Multiplication
	Systems of Linear Algebraic Equations
	Sort
	Image Processing

