
Parallel Programming Course.
OpenMP.

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

April 2, 2025

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 1 / 32



Today

1 Introduction to OpenMP

2 Hello World

3 Basic OpenMP Features

4 Compiler Directives and Clauses

5 Synchronization and Data Sharing

6 OpenMP functions

7 Environment variables

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 2 / 32



What is OpenMP?

Brief overview
Importance in parallel computing
Use cases

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 3 / 32



What is OpenMP?

Open standard for parallel programming
Supports multi-platform shared-memory multiprocessing
Used in computational science, engineering, and simulations

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 4 / 32



Your First OpenMP Program

1 #include <omp.h>
2 #include <stdio.h>
3
4 int main() {
5 #pragma omp parallel
6 {
7 printf("Hello from thread %d\n", omp_get_thread_num ());
8 }
9 return 0;

10 }
11

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 5 / 32



OpenMP Features

Compiler directives
Runtime library functions
Environment variables

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 6 / 32



Basic OpenMP Features

OpenMP provides three primary mechanisms to express parallelism clearly
and effectively:

Compiler directives (#pragma omp)
Runtime library functions
Environment variables

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 7 / 32



Compiler Directives

Compiler directives guide the compiler to parallelize sections of code.
General syntax:

#pragma omp directive [clauses]

Commonly used directives:
parallel — Creates parallel threads.
for — Parallelizes loop iterations.
section — Defines parallel sections.

Example:
1 #pragma omp parallel for
2 for(int i = 0; i < N; i++) {
3 a[i] = b[i] + c[i];
4 }
5

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 8 / 32



The parallel Directive

The parallel directive starts a parallel region executed by multiple
threads.
Syntax:

#pragma omp parallel [clauses]
{

// Code executed in parallel
}

Example:
1 #pragma omp parallel
2 {
3 printf("Thread %d is running\n", omp_get_thread_num ());
4 }
5

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 9 / 32



The for Directive

The for directive parallelizes loops among threads.
To take an effect it must be within an existing parallel region:
Syntax:

#pragma omp for [clauses]
for (init; condition; increment) {

// Loop body
}

Example:
1 #pragma omp parallel
2 {
3 #pragma omp for
4 for (int i = 0; i < N; i++) {
5 array[i] = compute(i);
6 }
7 }
8

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 10 / 32



The parallel for Directive

Combines the parallel and for directives, simplifying syntax.
Syntax:

#pragma omp parallel for [clauses]
for (init; condition; increment) {

// Loop body
}

Example:
1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 data[i] = process(i);
4 }
5

This is equivalent to a parallel region with a single for loop.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 11 / 32



Clauses: private and shared

Applicable to directives:
parallel, for, parallel for

Controls the scope of variables:
shared(var): Variable shared among threads (default).
private(var): Each thread gets its own private copy.

Example (parallel for):
1 int temp = 0;
2 #pragma omp parallel for private(temp)
3 for(int i = 0; i < N; i++) {
4 temp = compute(i);
5 result[i] = temp;
6 }
7

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 12 / 32



Clause: schedule

Applicable to directives:
for, parallel for

Controls iteration distribution among threads:
Syntax:

schedule(type, chunk_size)

Types:
static (default)
dynamic

guided

Example (parallel for):
1 #pragma omp parallel for schedule(dynamic ,4)
2 for(int i = 0; i < N; i++) {
3 heavy_computation(i);
4 }
5

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 13 / 32



Clause: reduction

Applicable to directives:
parallel, for, parallel for

Combines thread results safely into one variable.
Syntax:

reduction(operator: variable)

Common operators: +, -, *, max, min
Example (parallel for):

1 int total = 0;
2 #pragma omp parallel for reduction (+: total)
3 for(int i = 0; i < N; i++) {
4 total += array[i];
5 }
6 printf("Sum = %d\n", total);
7

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 14 / 32



Clause: num_threads

Applicable to directives:
parallel, parallel for

Sets number of threads explicitly:
Syntax:

num_threads(number_of_threads)

Example (parallel for):
1 #pragma omp parallel for num_threads (8)
2 for(int i = 0; i < N; i++) {
3 compute(i);
4 }
5

Overrides default thread count and environment settings.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 15 / 32



Sections

Use the sections directive to run independent tasks in parallel:
1 #pragma omp parallel sections
2 {
3 #pragma omp section
4 {
5 compute_task_A ();
6 }
7 #pragma omp section
8 {
9 compute_task_B ();

10 }
11 #pragma omp section
12 {
13 compute_task_C ();
14 }
15 }
16

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 16 / 32



Synchronization and Data Sharing

Barrier
Critical sections
Atomic operations
Built-in reduction operation
OpenMP locks (similar to mutex)

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 17 / 32



OpenMP Barrier (barrier)

Synchronizes threads explicitly; threads wait at the barrier until all threads
arrive.
Syntax:

#pragma omp barrier

Example:
1 #pragma omp parallel
2 {
3 compute_part1 ();
4
5 #pragma omp barrier // All threads wait here
6
7 compute_part2 (); // Starts only after all threads
8 // finish compute_part1 ()
9 }

10

Barrier ensures correct sequence in parallel regions.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 18 / 32



Critical Sections (critical)

Purpose: Ensures only one thread executes a code region at a time,
preventing race conditions.
Syntax:

#pragma omp critical [name]
{

// critical section
}

Example:
1 #pragma omp parallel
2 {
3 #pragma omp critical
4 {
5 sum += compute_value ();
6 }
7 }
8

Usage of this directive ensures safe access to the shared variables within
block boundaries.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 19 / 32



Named Critical Sections

Multiple named critical sections prevent unnecessary waiting.
Syntax:

#pragma omp critical(name)
{

// named critical section
}

Example:
1 #pragma omp parallel
2 {
3 #pragma omp critical(update_sum)
4 {
5 sum += compute_sum ();
6 }
7
8 #pragma omp critical(update_max)
9 {

10 max_val = max(max_val , compute_val ());
11 }
12 }
13

Different named critical regions do not block each other.
Nizhny Novgorod State University Parallel Programming Course. OpenMP. 20 / 32



Atomic Operations (atomic)

Purpose: Enforces atomicity of a single memory operation.
Syntax:

#pragma omp atomic
expression;

Supported operations: +, -, *, /, &, |, ,̂ ++, –
Example:

1 #pragma omp parallel for
2 for(int i = 0; i < N; i++) {
3 #pragma omp atomic
4 count += array[i];
5 }
6

It is more efficient than critical for simple arithmetic.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 21 / 32



critical vs. atomic

Key differences between these synchronization methods:
Critical Sections:

Allows arbitrary blocks of code.
More general-purpose, but potentially slower due to locking overhead.

Atomic Operations:
Limited to single, simple memory operations.
Faster, uses hardware-level instructions.

Use atomic for simple operations, critical for more complex sections.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 22 / 32



OpenMP Functions: Thread Management

Control and query the number of threads.
Commonly used functions:

omp_set_num_threads(int n)

omp_get_num_threads()

omp_get_thread_num()

omp_get_max_threads()

Example:
1 omp_set_num_threads (4);
2 #pragma omp parallel
3 {
4 int tid = omp_get_thread_num ();
5 printf("Hello from thread %d\n", tid);
6 }
7

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 23 / 32



OpenMP Locks

Purpose: Provide explicit, fine-grained control of synchronization for
critical regions.
API:

omp_init_lock() — Initializes a lock
omp_set_lock() — Locks (blocks if unavailable)
omp_unset_lock() — Releases a lock
omp_destroy_lock() — Frees lock resources

Example:
1 omp_lock_t lock;
2 omp_init_lock (&lock);
3
4 #pragma omp parallel for
5 for(int i = 0; i < N; i++) {
6 omp_set_lock (&lock);
7 sum += compute(i);
8 omp_unset_lock (&lock);
9 }

10
11 omp_destroy_lock (&lock);
12

Explicit locking provides precise synchronization control.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 24 / 32



OpenMP Functions: Timing

Useful functions for measuring execution time:
omp_get_wtime() — returns current time in seconds.
omp_get_wtick() — precision of timer.

Example:
1 double start = omp_get_wtime ();
2
3 #pragma omp parallel for
4 for(int i = 0; i < N; i++) {
5 heavy_computation(i);
6 }
7
8 double end = omp_get_wtime ();
9 printf("Elapsed time: %f seconds\n", end -start);

10

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 25 / 32



Environment Variables in OpenMP

Environment variables control OpenMP runtime behavior without
recompilation.
Common environment variables include:

OMP_NUM_THREADS

OMP_SCHEDULE

OMP_DYNAMIC

OMP_NESTED

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 26 / 32



OMP_NUM_THREADS

Specifies the default number of threads.
Example usage:

export OMP_NUM_THREADS=8
./my_program

Overrides default or explicitly set number of threads within code unless set
otherwise by num_threads clause.

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 27 / 32



OMP_SCHEDULE

Sets default scheduling policy for loops with the schedule(runtime)
clause.
Syntax:

export OMP_SCHEDULE="type,chunk"

Example:

export OMP_SCHEDULE="dynamic,4"
./my_program

Affects loops declared as:

#pragma omp parallel for schedule(runtime)

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 28 / 32



OMP_DYNAMIC and OMP_NESTED

Enables dynamic thread adjustment (true/false).
Example:

export OMP_DYNAMIC=true

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 29 / 32



OMP_DYNAMIC and OMP_NESTED

Allows nested parallelism (true/false).
Example:

export OMP_NESTED=true

Nested parallel regions:
1 #pragma omp parallel num_threads (2)
2 {
3 #pragma omp parallel num_threads (2)
4 {
5 // Nested region , total 4 threads
6 }
7 }
8

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 30 / 32



Thank You!

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 31 / 32



References

OpenMP Official Specification:
https://www.openmp.org/specifications/

OpenMP Reference Guides:
https://www.openmp.org/resources/refguides/

Nizhny Novgorod State University Parallel Programming Course. OpenMP. 32 / 32

https://www.openmp.org/specifications/
https://www.openmp.org/resources/refguides/

	Introduction to OpenMP
	Hello World
	Basic OpenMP Features
	Compiler Directives and Clauses
	Synchronization and Data Sharing
	OpenMP functions
	Environment variables

