
Parallel Programming course. TBB

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

April 2, 2025

Nizhny Novgorod State University Parallel Programming. TBB 1 / 27

Contents

1 Introduction to TBB

2 TBB tasks scheduler

3 TBB utility functions

4 TBB parallel execution constructs

5 Synchronization

6 Brief overview of asvanced features

7 Performance comparison

Nizhny Novgorod State University Parallel Programming. TBB 2 / 27

OpenMP recap

OpenMP is an open standard for shared-memory parallel programming
It uses compiler directives (#pragma omp), runtime functions, and
environment variables
Simplifies parallel loops and regions for multi-threaded execution
Serves as a baseline for comparing other parallel models

Nizhny Novgorod State University Parallel Programming. TBB 3 / 27

OpenMP vs TBB

OpenMP:
Open standard (not a library) that defines a set of compiler directives,
runtime library routines, and environment variables for parallel
programming
Directive-based, integrated into the compiler (specific implementation
is don on the compiler side)
Implements thread-level parallelism

TBB (Threading Building Blocks):
C++ template library
Uses task-based parallelism with work-stealing scheduling
Provides higher-level constructs and generic parallel patterns

TBB enables more flexible and fine-grained parallelism compared to
OpenMP

Nizhny Novgorod State University Parallel Programming. TBB 4 / 27

Pros and Cons of TBB

Pros
Task-based parallelism with
dynamic work-stealing
High-level constructs simplify
parallel code
Seamless integration with
modern C++ and STL
Scalable and efficient for
fine-grained tasks
Portable across different
platforms

Cons
Steeper learning curve compared
to directive-based models
Less intuitive for simple loop
parallelism
Threading issues debugging
sometimes can be challenging
due to dynamic scheduling

Nizhny Novgorod State University Parallel Programming. TBB 5 / 27

TBB history

Originally developed by Intel to simplify parallel programming in C++
Evolved into an open-source library and later integrated into Intel
oneAPI
Widely adopted in industry and academia for scalable task-based
parallelism

Nizhny Novgorod State University Parallel Programming. TBB 6 / 27

TBB history timeline

Early 2000s: Conceptual groundwork for task-based parallelism laid at
Intel
2006: Initial development of TBB begins for internal projects
2007: First public release of Intel Threading Building Blocks
2010: Major updates introduce improved C++ integration and
performance enhancements
2017: TBB is open-sourced, fostering community contributions
2019: Integration into Intel oneAPI, expanding its cross-platform reach

Nizhny Novgorod State University Parallel Programming. TBB 7 / 27

TBB fundamentals

A C++ library for task-based parallelism
Abstracts low-level thread management and uses a work-stealing
scheduler
Provides high-level constructs (e.g., tbb::parallel_for,
tbb::parallel_reduce) that simplify parallel code implementation
Promotes writing scalable code by focusing on tasks rather than
threads

Nizhny Novgorod State University Parallel Programming. TBB 8 / 27

Work-stealing dynamic scheduler

A work-stealing dynamic scheduler in TBB is a type of scheduling
algorithm designed to efficiently balance the workload across multiple
threads in a parallel program
The idea: each thread maintains its own queue of tasks. When a thread
finishes its own work and becomes idle, instead of waiting, it tries to
"steal" tasks from other threads queues to stay productive. This helps to
dynamically balance the workload and utilize CPU resources effectively

Nizhny Novgorod State University Parallel Programming. TBB 9 / 27

How TBB Implements Work Stealing

Local Queues:
Each worker thread maintains its own local task queue (a double-ended
queue)
New tasks are added to the bottom (LIFO) for cache-friendly, nested
task execution

Stealing:
When a thread’s local queue is empty, it becomes a "thief"
The thief randomly selects a victim thread and steals a task from the
top (FIFO) of its deque

Minimizing Contention:
Most operations are thread-local, avoiding the need for synchronization
Stealing operations are synchronized but occur infrequently and in a
randomized manner

Nizhny Novgorod State University Parallel Programming. TBB 10 / 27

Max thread number in TBB

TBB uses a global task scheduler that automatically manages worker
threads.
You can limit the maximum number of threads using
tbb::global_control.
This is useful to match hardware capabilities or limit resource usage.
Example: Limit TBB to use only a specific number of threads.

1 #include "tbb/global_control.h"
2 #include "tbb/parallel_for.h"
3
4 int main() {
5 // Limit TBB to use only 4 threads
6 tbb:: global_control gc(tbb:: global_control :: max_allowed_parallelism , 4);
7
8 // Example parallel work
9 tbb:: parallel_for (0, N, [&](int i){

10 // Compute something for index i
11 });
12
13 return 0;
14 }
15

Nizhny Novgorod State University Parallel Programming. TBB 11 / 27

TBB arenas: Isolated execution contexts

TBB arenas let you create isolated execution contexts with custom
concurrency levels.
They allow you to control resource usage and isolate parallel work
from the global scheduler.
Use tbb::task_arena to define a pool of worker threads dedicated to
a specific section of code.
Execute tasks within an arena using the execute() method.

1 #include "tbb/task_arena.h"
2 #include "tbb/parallel_for.h"
3
4 int main() {
5 // Create a task arena with a maximum of 2 threads
6 tbb:: task_arena arena (2);
7
8 arena.execute ([&]{
9 tbb:: parallel_for (0, N, [&](int i){

10 // Work executed within the arena
11 process(i);
12 });
13 });
14
15 return 0;
16 }
17

Nizhny Novgorod State University Parallel Programming. TBB 12 / 27

TBB core parallel execution constructs

tbb::parallel_for: Distributes loop iterations among tasks
tbb::parallel_reduce: Performs reductions over a range
tbb::parallel_scan: Computes prefix sums in parallel
tbb::parallel_invoke for tasks: Executes independent functions
concurrently
tbb::task_group: For more convenient parallel task management
Concurrent containers and synchronization primitives

Nizhny Novgorod State University Parallel Programming. TBB 13 / 27

tbb::blocked_range

Purpose: Defines a range of values to be processed in parallel
Usage: Commonly used with tbb::parallel_for and
parallel_reduce
Range Specification: Represents a half-open interval [begin, end) and
supports an optional grain size
Grain Size:

Specifies the minimum number of iterations in a subrange.
A small grain size increases task granularity, enhancing load balancing
but may add overhead.
A large grain size reduces overhead but may cause imbalance if work
per iteration varies.

1 #include "tbb/blocked_range.h"
2
3 // Example: process a range of indices [0, N)
4 tbb:: blocked_range <size_t > range(0, N, grain_size);
5
6 tbb:: parallel_for(range , [&](const tbb:: blocked_range <size_t >& r) {
7 for (size_t i = r.begin(); i != r.end(); ++i) {
8 process(i);
9 }

10 });
11

Nizhny Novgorod State University Parallel Programming. TBB 14 / 27

Parallel loops (tbb::parallel_for)

Splits a loop range into subranges executed in parallel
Uses a blocked range to define the iteration space

1 #include "tbb/parallel_for.h"
2 #include "tbb/blocked_range.h"
3 #include <vector >
4
5 std::vector <int > data(N);
6
7 tbb:: parallel_for(tbb:: blocked_range <size_t >(0, N),
8 [&](const tbb:: blocked_range <size_t >& r) {
9 for(size_t i = r.begin (); i != r.end(); ++i) {

10 data[i] = compute(i);
11 }
12 });
13

Or with range-based loop:
1 #include "tbb/parallel_for.h"
2 #include "tbb/blocked_range.h"
3 #include <vector >
4
5 std::vector <int > data(N);
6
7 tbb:: parallel_for(tbb:: blocked_range <size_t >(0, N),
8 [&](const tbb:: blocked_range <size_t >& r) {
9 for(auto i : r) {

10 data[i] = compute(i);
11 }
12 });
13

Nizhny Novgorod State University Parallel Programming. TBB 15 / 27

Static scheduling with static_partitioner

TBB uses dynamic work-stealing by default
Use tbb::static_partitioner to enforce a static division of the
iteration space
This partitioner divides work evenly at the start, which can reduce
overhead for regular, balanced workloads

1 #include "tbb/parallel_for.h"
2 #include "tbb/blocked_range.h"
3 #include "tbb/static_partitioner.h"
4 #include <vector >
5
6 std::vector <int > data(N);
7
8 tbb:: parallel_for(
9 tbb:: blocked_range <size_t >(0, N),

10 [&](const tbb:: blocked_range <size_t >& r) {
11 for(auto i : r) {
12 data[i] = compute(i);
13 }
14 },
15 tbb:: static_partitioner () // Use static partitioning
16);
17

Nizhny Novgorod State University Parallel Programming. TBB 16 / 27

Parallel reduction (tbb::parallel_reduce)

Performs reduction (e.g., sum, max) across a range
Divides the work and then combines partial results

1 #include "tbb/parallel_reduce.h"
2 #include "tbb/blocked_range.h"
3 #include <vector >
4 #include <functional >
5
6 std::vector <int > array(N);
7
8 int total = tbb:: parallel_reduce(
9 tbb:: blocked_range <size_t >(0, N),

10 0,
11 [&](const tbb:: blocked_range <size_t >& r, int local_sum) -> int {
12 for(size_t i = r.begin (); i != r.end(); ++i)
13 local_sum += array[i];
14 return local_sum;
15 },
16 std::plus <int >());
17

Supported operations:

Sum: a + b

Product: a * b

Minimum: std::min(a, b)

Maximum: std::max(a, b)

Logical AND / OR: a && b and a || b

Custom operations: e.g., merging data structures or combining histograms

Nizhny Novgorod State University Parallel Programming. TBB 17 / 27

TBB tasks

TBB tasks represent independent units of work
They allow fine-grained parallelism and dynamic scheduling

1 #include "tbb/parallel_invoke.h"
2
3 tbb:: parallel_invoke(
4 [](){ compute_task_A (); },
5 [](){ compute_task_B (); },
6 [](){ compute_task_C (); }
7);
8

Nizhny Novgorod State University Parallel Programming. TBB 18 / 27

TBB task groups

The task_group interface simplifies tasks management
It allows to launch and wait for a bunch of tasks

1 #include "tbb/task_group.h"
2
3 void compute () {
4 tbb:: task_group tg;
5 tg.run ([](){ compute_task_A (); });
6 tg.run ([](){ compute_task_B (); });
7 tg.wait(); // Wait for both tasks to complete
8 }
9

Nizhny Novgorod State University Parallel Programming. TBB 19 / 27

Scan algorithm (tbb::parallel_scan)

Useful for parallel prefix sum (scan) operations
Supports both inclusive and exclusive scans

1 #include "tbb/parallel_scan.h"
2 #include "tbb/blocked_range.h"
3 #include <vector >
4 #include <numeric >
5
6 std::vector <int > data(N);
7 int initial = 0;
8
9 tbb:: parallel_scan(

10 tbb:: blocked_range <size_t >(0, N),
11 initial ,
12 [&](const tbb:: blocked_range <size_t >& r, int running_total , bool is_final_scan)

-> int {
13 for(size_t i = r.begin (); i != r.end(); ++i) {
14 running_total += data[i];
15 if(is_final_scan)
16 data[i] = running_total;
17 }
18 return running_total;
19 },
20 std::plus <int >());
21

Nizhny Novgorod State University Parallel Programming. TBB 20 / 27

Synchronization

TBB provides synchronization primitives such as:
tbb::mutex and tbb::spin_mutex for mutual exclusion
Atomic operations and concurrent containers for lock-free data access

The runtime work-stealing scheduler minimizes contention by
dynamically balancing tasks

Nizhny Novgorod State University Parallel Programming. TBB 21 / 27

Mutex (tbb::mutex)

Provides mutual exclusion for protecting shared data
Uses RAII (resource acquisition is initialization paradigm) with
scoped_lock to automatically manage locking
Lightweight and efficient for fine-grained synchronization

1 #include "tbb/mutex.h"
2 #include <vector >
3
4 tbb::mutex m;
5 std::vector <int > shared_data;
6
7 void update_data(int value) {
8 tbb::mutex :: scoped_lock lock(m); // Lock acquired
9 shared_data.push_back(value);

10 // Lock released automatically when ’lock’ goes out of scope
11 }
12

Nizhny Novgorod State University Parallel Programming. TBB 22 / 27

What about the barrier in TBB?

Unlike OpenMP, TBB does not provide an explicit barrier construct
Implicit Synchronization:

TBB parallel algorithms (e.g., tbb::parallel_for,
tbb::parallel_reduce) return only after all tasks are complete
This behavior naturally synchronizes work without needing an explicit
barrier

Task Group Synchronization:
When using tbb::task_group, call wait() to ensure all spawned
tasks have finished

Design Philosophy: TBB’s task-based model minimizes the need for
explicit synchronization, improving scalability and reducing overhead

Nizhny Novgorod State University Parallel Programming. TBB 23 / 27

Brief advanced TBB features overview

Pipelines and Flow Graphs:
tbb::flow::graph: Build complex workflows using nodes
Example: Create a pipeline that processes data through
function_node, buffer_node, and join_node to orchestrate task
dependencies

Thread-safe data structures
tbb::concurrent_vector: Dynamic array with concurrent
push-backs
tbb::concurrent_hash_map: High-performance hash table for
concurrent access
tbb::concurrent_queue: Lock-free queue
tbb::concurrent_unordered_map: Unordered map optimized for
parallel workloads

Scalable Memory Allocation optimized for parallel environments:
tbb::scalable_allocator: Can be used with STL containers to
reduce memory contention
Example: Using tbb::scalable_allocator with a std::vector for
improved allocation performance in multi-threaded scenarios

and others. . .
Nizhny Novgorod State University Parallel Programming. TBB 24 / 27

Performance: TBB vs OpenMP

Performance factors:
TBB dynamic scheduling may introduce overhead for fine-grained tasks
OpenMP static scheduling can be more efficient for uniform workloads

Scalability and load balancing:
TBB deals significantly better with unbalanced workloads with its
work-stealing scheduler
OpenMP may perform better in highly regular, compute-intensive loops

Optimization and tuning:
Both TBB and OpenMP are highly optimized
Real-world performance is case-dependent: benchmarking on target
hardware and specific tasks is essential

Nizhny Novgorod State University Parallel Programming. TBB 25 / 27

Thank You!

Nizhny Novgorod State University Parallel Programming. TBB 26 / 27

References

oneAPI Threading Building Blocks GitHub repository:
https://github.com/uxlfoundation/oneTBB

oneAPI Threading Building Blocks (oneTBB) documentation:
https://uxlfoundation.github.io/oneTBB/

CppCon 2015: Pablo Halpern "Work Stealing":
https://www.youtube.com/watch?v=iLHNF7SgVN4

Pushing the limits of work-stealing: https://community.intel.
com/legacyfs/online/drupal_files/managed/9d/48/
ConfAnton-Pushing-the-limits-of-work-stealing-approved.
pdf

Nizhny Novgorod State University Parallel Programming. TBB 27 / 27

https://github.com/uxlfoundation/oneTBB
https://uxlfoundation.github.io/oneTBB/
https://www.youtube.com/watch?v=iLHNF7SgVN4
https://community.intel.com/legacyfs/online/drupal_files/managed/9d/48/ConfAnton-Pushing-the-limits-of-work-stealing-approved.pdf
https://community.intel.com/legacyfs/online/drupal_files/managed/9d/48/ConfAnton-Pushing-the-limits-of-work-stealing-approved.pdf
https://community.intel.com/legacyfs/online/drupal_files/managed/9d/48/ConfAnton-Pushing-the-limits-of-work-stealing-approved.pdf
https://community.intel.com/legacyfs/online/drupal_files/managed/9d/48/ConfAnton-Pushing-the-limits-of-work-stealing-approved.pdf

	Introduction to TBB
	TBB tasks scheduler
	TBB utility functions
	TBB parallel execution constructs
	Synchronization
	Brief overview of asvanced features
	Performance comparison

