
Parallel Programming course. C++ threading

Obolenskiy Arseniy, Nesterov Alexander

Nizhny Novgorod State University

April 29, 2025

Nizhny Novgorod State University Parallel Programming. C++ threading 1 / 32



Contents

1 Introduction to C++ threading API

2 C++ STL threading API (std::thread, std::jthread)

3 std::future, std::promise and std::async

4 Synchronization primitives (mutexes, condition variables, . . . )

5 Best practices and recommendations

Nizhny Novgorod State University Parallel Programming. C++ threading 2 / 32



Introduction to C++ threading API

Nizhny Novgorod State University Parallel Programming. C++ threading 3 / 32



What is std::thread?

Part of the C++11 thread support library (<thread>, <mutex>, etc.)
Low-level, manual thread creation and management
Relies on the OS native threads under the hood
Provides:

std::thread for launching threads
Synchronization primitives (std::mutex, std::condition_variable,
std::atomic)
Utilities for futures and promises (std::future, std::promise)

Nizhny Novgorod State University Parallel Programming. C++ threading 4 / 32



Threading before C++11

POSIX threads (pthread): C-based API, widely used on Unix-like
systems
Windows threads: Win32 API with CreateThread,
CRITICAL_SECTION, and events
External libraries (e.g. Boost.Thread)

Challenges and inconveniences:
non-standard APIs (towards C++)
platform dependent APIs
verbose initialization boilerplate
manual resource management

Nizhny Novgorod State University Parallel Programming. C++ threading 5 / 32



std::thread history

C++11 (2011): Introduced std::thread, std::mutex,
std::future, etc.
C++14/17/20: Incremental improvements (e.g.,
std::hardware_constructive_interference_size)
Widely adopted as the base for custom thread pools and concurrency
utilities
Now the foundation of many higher-level C++ concurrency libraries

Nizhny Novgorod State University Parallel Programming. C++ threading 6 / 32



OpenMP vs TBB vs std::thread

OpenMP
Directive-based, compiler-driven shared-memory parallelism
Simple loop and region parallelism

TBB
Template library, task-based parallelism with work-stealing
High-level parallel patterns (tbb::parallel_for,
tbb::parallel_reduce, etc.)

std::thread
Low-level manual thread API
Full control over thread lifetime, but more boilerplate
Foundation for building custom task systems or thread pools

Nizhny Novgorod State University Parallel Programming. C++ threading 7 / 32



Pros and cons of std::thread

Pros
Complete control over thread
creation and destruction
No hidden scheduler—behavior
is predictable
Part of standard C++, portable
across platforms
Good for learning fundamentals

Cons
Manual management—risk of
leaks, detach/join errors
Verbose boilerplate for
synchronization
No built-in task scheduling or
work-stealing
Harder to scale and tune
compared to higher-level APIs

Nizhny Novgorod State University Parallel Programming. C++ threading 8 / 32



C++ STL threading API
(std::thread, std::jthread)

Nizhny Novgorod State University Parallel Programming. C++ threading 9 / 32



std::thread details

Constructors:
std::thread(callable, args...): starts a new thread executing
callable with args
Default constructor: creates a thread object without an associated
thread

Member functions:
join(): blocks until the thread finishes execution
detach(): detaches the thread to run independently
joinable(): checks whether the thread can be joined
get_id(): returns the std::thread::id of the thread

Properties:
Move-only: supports move construction and assignment; copy
operations are deleted
Static hardware_concurrency(): returns the number of concurrent
threads supported

Nizhny Novgorod State University Parallel Programming. C++ threading 10 / 32



Creating and launching threads

1 #include <thread >
2 #include <iostream >
3
4 void worker(int id) {
5 std::cout << "Worker " << id << " running\n";
6 }
7
8 int main() {
9 // Launch two threads with argument

10 std:: thread t1(worker , 1);
11 std:: thread t2(worker , 2);
12
13 // Wait for them to finish
14 if (t1.joinable ()) {
15 t1.join();
16 }
17 if (t2.joinable ()) {
18 t2.join();
19 }
20
21 return 0;
22 }
23

Construct std::thread with a callable + optional args
Must call join() or detach() before destruction
Threads are move-only: no copy construction/assignment

Nizhny Novgorod State University Parallel Programming. C++ threading 11 / 32



Managing thread lifetime

join(): waits for thread completion
detach(): allows thread to run independently (daemon-like)

1 std:: thread t(worker);
2 // ...
3 if (t.joinable ()) {
4 t.join();
5 }
6

joinable(): check if thread can be joined

Detached threads continue after main—dangerous if resources go out
of scope
Always ensure each thread is either joined or detached

Nizhny Novgorod State University Parallel Programming. C++ threading 12 / 32



Passing arguments to threads

1 #include <thread >
2 #include <string >
3 #include <iostream >
4
5 void greet(const std:: string &name) {
6 std::cout << "Hello , " << name << "!\n";
7 }
8
9 int main() {

10 std:: string user = "Alice";
11 // Pass by reference: use std::ref
12 std:: thread t(greet , std::ref(user));
13 t.join();
14 return 0;
15 }
16

By default, args are copied into the new thread
Use std::ref() to pass references

Nizhny Novgorod State University Parallel Programming. C++ threading 13 / 32



Querying hardware concurrency capabilities

std::thread::hardware_concurrency() returns the number of
supported threads
May potentially return 0

unsigned n = std::thread::hardware_concurrency(); Usage
example: to size thread pools or partition work

Nizhny Novgorod State University Parallel Programming. C++ threading 14 / 32



std::jthread

Introduced in C++20 as a safer and more convenient alternative to
std::thread.
Automatically joins upon destruction, reducing the risk of detached
threads.
Supports cooperative cancellation via std::stop_token.

Example usage:
1 #include <iostream >
2 #include <thread >
3 #include <chrono >
4
5 void task(std:: stop_token stoken) {
6 while (! stoken.stop_requested ()) {
7 std::cout << "Working ...\n";
8 std:: this_thread :: sleep_for(std:: chrono :: milliseconds (100));
9 }

10 std::cout << "Task stopping .\n";
11 }
12
13 int main() {
14 std:: jthread jt(task);
15 std:: this_thread :: sleep_for(std:: chrono :: seconds (1));
16 // Request stop automatically during destruction or manually via jt.request_stop

();
17 return 0;
18 }
19

Nizhny Novgorod State University Parallel Programming. C++ threading 15 / 32



std::future, std::promise and
std::async

Nizhny Novgorod State University Parallel Programming. C++ threading 16 / 32



Future/Promise and Async Execution

Future and promise provide a mechanism for asynchronous
communication between threads
A promise allows one thread to set a value or report an error
The associated future retrieves the value, waiting if necessary
std::async simplifies launching asynchronous tasks without explicit
thread management
These features promote decoupling of computation and enhance
concurrency control

Nizhny Novgorod State University Parallel Programming. C++ threading 17 / 32



std::future and std::promise

1 #include <future >
2 #include <iostream >
3
4 int compute () {
5 int result;
6 ... // heavy computation
7 return result;
8 }
9

10 int main() {
11 std::promise <int > prom;
12 std::future <int > fut = prom.get_future ();
13
14 std:: thread t([& prom]{
15 prom.set_value(compute ());
16 });
17
18 std::cout << "Result: " << fut.get() << "\n";
19 t.join();
20 return 0;
21 }
22

std::promise sets a value (or failure)
std::future retrieves it on demand

Nizhny Novgorod State University Parallel Programming. C++ threading 18 / 32



Using std::async

Launches tasks asynchronously and returns a std::future

Can run immediately in a new thread or be deferred until needed
Simplifies asynchronous programming by handling thread management

1 #include <future >
2 #include <iostream >
3
4 int computeSquare(int x) {
5 // Simulate heavy computation
6 std:: this_thread :: sleep_for(std:: chrono :: seconds (1));
7 return x * x;
8 }
9

10 int main() {
11 // Launch computeSquare asynchronously. Using std:: launch :: async forces immediate

execution
12 std::future <int > fut = std::async(std:: launch ::async , computeSquare , 5);
13 std::cout << "Square: " << fut.get() << std::endl;
14 return 0;
15 }
16

Nizhny Novgorod State University Parallel Programming. C++ threading 19 / 32



Different launch policies available in std::async

1 #include ...
2
3 int computeCube(int x) { ... }
4
5 int main() {
6 // Using deferred launch: execution is postponed until get() is called
7 std::future <int > futDeferred = std::async(std:: launch ::deferred , computeCube , 3);
8 std::cout << "Deferred result: " << futDeferred.get() << std::endl;
9

10 // Using async launch: task is executed immediately in a new thread
11 std::future <int > futAsync = std::async(std:: launch ::async , computeCube , 3);
12 std::cout << "Async result: " << futAsync.get() << std::endl;
13
14 // Using default launch policy: implementation defined behavior
15 std::future <int > futDefault = std:: async(computeCube , 3);
16 std::cout << "Default launch result: " << futDefault.get() << std::endl;
17
18 return 0;
19 }
20

Policies:
std::launch::deferred: Execution is delayed until get() is called
std::launch::async: Execution starts immediately in a separate
thread
Default policy: The decision is left to the implementation

Nizhny Novgorod State University Parallel Programming. C++ threading 20 / 32



Synchronization primitives
(mutexes, condition variables, . . . )

Nizhny Novgorod State University Parallel Programming. C++ threading 21 / 32



Synchronization primitives overview

C++ provides several mechanisms to coordinate concurrent
operations:

Mutual exclusion: std::mutex, std::lock_guard,
std::unique_lock
Condition variables: std::condition_variable
Atomic operations: std::atomic

Choose the appropriate primitive based on the required control and
performance
Proper synchronization is key to ensuring thread safety and avoiding
data races

Nizhny Novgorod State University Parallel Programming. C++ threading 22 / 32



std::mutex

1 #include <mutex >
2 #include <thread >
3 #include <iostream >
4
5 std::mutex mtx;
6 int counter = 0;
7
8 void increment () {
9 mtx.lock();

10 {
11 ++ counter; // protected section
12 }
13 mtx.unlock ();
14 }
15
16 int main() {
17 std:: thread t1(increment);
18 std:: thread t2(increment);
19
20 t1.join();
21 t2.join();
22
23 std::cout << "Final counter value: " << counter << std::endl;
24 return 0;
25 }
26

Manual locking with mtx.lock() and unlocking with mtx.unlock()

Be cautious with exceptions to avoid deadlocks
There is a way to ensure that mutex will be unlocked. . .

Nizhny Novgorod State University Parallel Programming. C++ threading 23 / 32



std::mutex and std::lock_guard

1 #include <mutex >
2
3 std::mutex mtx;
4 int counter = 0;
5
6 void increment () {
7 std::lock_guard <std::mutex > lock(mtx);
8 ++ counter; // protected section
9 }

10

std::mutex: exclusive lock
std::lock_guard: RAII wrapper—locks on construction, unlocks on
destruction

Nizhny Novgorod State University Parallel Programming. C++ threading 24 / 32



std::unique_lock and std::condition_variable

1 #include <mutex >
2 #include <condition_variable >
3
4 std::mutex mtx;
5 std:: condition_variable cv;
6 bool ready = false;
7
8 void worker () {
9 std:: unique_lock <std::mutex > lock(mtx);

10 cv.wait(lock , []{ return ready; });
11 // proceed once ready == true
12 }
13
14 void notifier () {
15 {
16 std::lock_guard <std::mutex > lock(mtx);
17 ready = true;
18 }
19 cv.notify_one ();
20 }
21

std::unique_lock: provides flexible locking mechanisms such as deferred
locking, timed locking, and manual unlocking/relocking, unlike
lock_guard which locks immediately and strictly scopes the lock.
std::condition_variable: allows one or more threads to wait until a
particular condition is met. It’s typically used with unique_lock to enable
the thread to wait and then be notified.

Nizhny Novgorod State University Parallel Programming. C++ threading 25 / 32



std::atomic

Lock-free primitives for simple data types. Avoid mutex overhead for simple
counters and flags Supported operations list:

store: assign a new value
load: retrieve the current value
exchange: replace the value and obtain the old value
compare_exchange_weak/compare_exchange_strong: atomically
compare and set
fetch_add: add to the value and return the previous value
fetch_sub: subtract from the value and return the previous value
fetch_and: perform bitwise AND and return the previous value
fetch_or: perform bitwise OR and return the previous value
fetch_xor: perform bitwise XOR and return the previous value

Nizhny Novgorod State University Parallel Programming. C++ threading 26 / 32



Atomic operations usage example

1 #include <atomic >
2 #include <thread >
3 #include <iostream >
4
5 std::atomic <int > counter (0);
6
7 void increment () {
8 for (int i = 0; i < 100000; ++i) {
9 counter.fetch_add(1, std:: memory_order_relaxed);

10 }
11 }
12
13 int main() {
14 std:: thread t1(increment);
15 std:: thread t2(increment);
16
17 t1.join();
18 t2.join();
19
20 std::cout << "Final counter value: " << counter.load() << std::endl;
21 return 0;
22 }
23

std::atomic provides lock-free operations. Use fetch_add method and
load to operate on atomic variables safely

Nizhny Novgorod State University Parallel Programming. C++ threading 27 / 32



Best practices and
recommendations

Nizhny Novgorod State University Parallel Programming. C++ threading 28 / 32



Best practices and recommendations

Always join or detach threads before destruction
Prefer RAII wrappers (std::lock_guard, std::unique_lock)
Minimize shared state; prefer message passing or futures
Be cautious with detached threads, manage lifetimes carefully
Consider higher-level thread pools (e.g., std::async)

Nizhny Novgorod State University Parallel Programming. C++ threading 29 / 32



When and where to use std::thread in real world scenarios

Fine-grained control over threading
Building custom schedulers or thread pools
Interfacing directly with OS thread APIs
Performance critical sections where you avoid scheduler overhead
When introducing 3rdparty library is an overkill

Nizhny Novgorod State University Parallel Programming. C++ threading 30 / 32



Thank You!

Nizhny Novgorod State University Parallel Programming. C++ threading 31 / 32



References

cppreference.com: https://en.cppreference.com/w/cpp/thread

Nizhny Novgorod State University Parallel Programming. C++ threading 32 / 32

https://en.cppreference.com/w/cpp/thread

	Introduction to C++ threading API
	C++ STL threading API (std::thread, std::jthread)
	std::future, std::promise and std::async
	Synchronization primitives (mutexes, condition variables, …)
	Best practices and recommendations

