| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | #include "korolev_k_sobel_oprator/seq/include/ops_seq.hpp" | ||
| 2 | |||
| 3 | #include <algorithm> | ||
| 4 | #include <array> | ||
| 5 | #include <cmath> | ||
| 6 | #include <cstddef> | ||
| 7 | #include <cstdint> | ||
| 8 | #include <vector> | ||
| 9 | |||
| 10 | #include "korolev_k_sobel_oprator/common/include/common.hpp" | ||
| 11 | |||
| 12 | namespace korolev_k_sobel_oprator { | ||
| 13 | |||
| 14 | namespace { | ||
| 15 | |||
| 16 | // Матрицы Собеля для свертки | ||
| 17 | constexpr std::array<std::array<int, 3>, 3> kSobelX = {{{{-1, 0, 1}}, {{-2, 0, 2}}, {{-1, 0, 1}}}}; | ||
| 18 | constexpr std::array<std::array<int, 3>, 3> kSobelY = {{{{-1, -2, -1}}, {{0, 0, 0}}, {{1, 2, 1}}}}; | ||
| 19 | |||
| 20 | // Конвертация цветного изображения в grayscale | ||
| 21 | 48 | std::vector<uint8_t> ConvertToGrayscale(const std::vector<uint8_t> &pixels, int width, int height, int channels) { | |
| 22 |
2/2✓ Branch 0 taken 24 times.
✓ Branch 1 taken 24 times.
|
48 | if (channels == 1) { |
| 23 | 24 | return pixels; | |
| 24 | } | ||
| 25 | |||
| 26 | 24 | const auto size = static_cast<std::size_t>(width) * static_cast<std::size_t>(height); | |
| 27 | 24 | std::vector<uint8_t> grayscale(size); | |
| 28 |
2/2✓ Branch 0 taken 280 times.
✓ Branch 1 taken 24 times.
|
304 | for (int row_idx = 0; row_idx < height; ++row_idx) { |
| 29 |
2/2✓ Branch 0 taken 4200 times.
✓ Branch 1 taken 280 times.
|
4480 | for (int col_idx = 0; col_idx < width; ++col_idx) { |
| 30 | 4200 | const int idx = ((row_idx * width) + col_idx) * channels; | |
| 31 | // Формула для конвертации RGB в grayscale: 0.299*R + 0.587*G + 0.114*B | ||
| 32 |
1/2✓ Branch 0 taken 4200 times.
✗ Branch 1 not taken.
|
4200 | const uint8_t r = pixels[idx]; |
| 33 |
2/4✓ Branch 0 taken 4200 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 4200 times.
✗ Branch 3 not taken.
|
4200 | const uint8_t g = (channels > 1) ? pixels[idx + 1] : 0; |
| 34 |
1/2✓ Branch 0 taken 4200 times.
✗ Branch 1 not taken.
|
4200 | const uint8_t b = (channels > 2) ? pixels[idx + 2] : 0; |
| 35 | const int gray_idx = (row_idx * width) + col_idx; | ||
| 36 | 4200 | grayscale[gray_idx] = static_cast<uint8_t>((0.299 * r) + (0.587 * g) + (0.114 * b)); | |
| 37 | } | ||
| 38 | } | ||
| 39 | return grayscale; | ||
| 40 | } | ||
| 41 | |||
| 42 | // Применение оператора Собеля к grayscale изображению | ||
| 43 | 48 | std::vector<uint8_t> ApplySobelOperator(const std::vector<uint8_t> &grayscale, int width, int height) { | |
| 44 | 48 | const auto size = static_cast<std::size_t>(width) * static_cast<std::size_t>(height); | |
| 45 | 48 | std::vector<uint8_t> result(size, 0); | |
| 46 | |||
| 47 | // Обрабатываем только внутренние пиксели (пропускаем границы) | ||
| 48 |
2/2✓ Branch 0 taken 464 times.
✓ Branch 1 taken 48 times.
|
512 | for (int row_idx = 1; row_idx < height - 1; ++row_idx) { |
| 49 |
2/2✓ Branch 0 taken 6352 times.
✓ Branch 1 taken 464 times.
|
6816 | for (int col_idx = 1; col_idx < width - 1; ++col_idx) { |
| 50 | int gx = 0; | ||
| 51 | int gy = 0; | ||
| 52 | |||
| 53 | // Применяем матрицы свертки | ||
| 54 |
2/2✓ Branch 0 taken 19056 times.
✓ Branch 1 taken 6352 times.
|
25408 | for (int ky = -1; ky <= 1; ++ky) { |
| 55 |
2/2✓ Branch 0 taken 57168 times.
✓ Branch 1 taken 19056 times.
|
76224 | for (int kx = -1; kx <= 1; ++kx) { |
| 56 | 57168 | const int pixel_idx = ((row_idx + ky) * width) + (col_idx + kx); | |
| 57 | 57168 | const int pixel_value = static_cast<int>(grayscale[pixel_idx]); | |
| 58 | 57168 | const int kernel_y = ky + 1; | |
| 59 | 57168 | const int kernel_x = kx + 1; | |
| 60 | 57168 | gx += pixel_value * kSobelX.at(static_cast<std::size_t>(kernel_y)).at(static_cast<std::size_t>(kernel_x)); | |
| 61 | 57168 | gy += pixel_value * kSobelY.at(static_cast<std::size_t>(kernel_y)).at(static_cast<std::size_t>(kernel_x)); | |
| 62 | } | ||
| 63 | } | ||
| 64 | |||
| 65 | // Вычисляем величину градиента: |Gx| + |Gy| | ||
| 66 | 6352 | int magnitude = std::abs(gx) + std::abs(gy); | |
| 67 | |||
| 68 | // Нормализуем в диапазон [0, 255] | ||
| 69 | // Максимальное значение для |Gx| + |Gy| при uint8_t: 255 * 4 = 1020 | ||
| 70 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 6352 times.
|
6352 | magnitude = std::min(255, magnitude / 4); |
| 71 | |||
| 72 | 6352 | const int result_idx = (row_idx * width) + col_idx; | |
| 73 | 6352 | result[result_idx] = static_cast<uint8_t>(magnitude); | |
| 74 | } | ||
| 75 | } | ||
| 76 | |||
| 77 | 48 | return result; | |
| 78 | } | ||
| 79 | |||
| 80 | } // namespace | ||
| 81 | |||
| 82 |
1/2✓ Branch 1 taken 48 times.
✗ Branch 2 not taken.
|
48 | KorolevKSobelOpratorSEQ::KorolevKSobelOpratorSEQ(const InType &in) { |
| 83 | SetTypeOfTask(GetStaticTypeOfTask()); | ||
| 84 | GetInput() = in; | ||
| 85 | GetOutput() = {}; | ||
| 86 | 48 | } | |
| 87 | |||
| 88 | 48 | bool KorolevKSobelOpratorSEQ::ValidationImpl() { | |
| 89 | const auto &input = GetInput(); | ||
| 90 | // Проверяем, что размеры корректны и массив пикселей имеет правильный размер | ||
| 91 |
3/6✓ Branch 0 taken 48 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 48 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 48 times.
✗ Branch 5 not taken.
|
48 | if (input.width <= 0 || input.height <= 0 || input.channels <= 0) { |
| 92 | return false; | ||
| 93 | } | ||
| 94 | 48 | const auto expected_size = static_cast<std::size_t>(input.width) * static_cast<std::size_t>(input.height) * | |
| 95 |
1/2✓ Branch 0 taken 48 times.
✗ Branch 1 not taken.
|
48 | static_cast<std::size_t>(input.channels); |
| 96 |
1/2✓ Branch 0 taken 48 times.
✗ Branch 1 not taken.
|
48 | if (input.pixels.size() != expected_size) { |
| 97 | return false; | ||
| 98 | } | ||
| 99 | 48 | return GetOutput().empty(); | |
| 100 | } | ||
| 101 | |||
| 102 | 48 | bool KorolevKSobelOpratorSEQ::PreProcessingImpl() { | |
| 103 | GetOutput() = {}; | ||
| 104 | 48 | return true; | |
| 105 | } | ||
| 106 | |||
| 107 | 48 | bool KorolevKSobelOpratorSEQ::RunImpl() { | |
| 108 | const auto &input = GetInput(); | ||
| 109 | |||
| 110 | // Если изображение слишком маленькое для применения оператора Собеля | ||
| 111 |
2/4✓ Branch 0 taken 48 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 48 times.
|
48 | if (input.width < 3 || input.height < 3) { |
| 112 | ✗ | const auto size = static_cast<std::size_t>(input.width) * static_cast<std::size_t>(input.height); | |
| 113 | ✗ | GetOutput() = std::vector<uint8_t>(size, 0); | |
| 114 | ✗ | return true; | |
| 115 | } | ||
| 116 | |||
| 117 | // Конвертируем в grayscale, если нужно | ||
| 118 | 48 | std::vector<uint8_t> grayscale = ConvertToGrayscale(input.pixels, input.width, input.height, input.channels); | |
| 119 | |||
| 120 | // Применяем оператор Собеля | ||
| 121 |
2/6✓ Branch 1 taken 48 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 48 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
|
96 | GetOutput() = ApplySobelOperator(grayscale, input.width, input.height); |
| 122 | |||
| 123 | return true; | ||
| 124 | } | ||
| 125 | |||
| 126 | 48 | bool KorolevKSobelOpratorSEQ::PostProcessingImpl() { | |
| 127 | 48 | return true; | |
| 128 | } | ||
| 129 | |||
| 130 | } // namespace korolev_k_sobel_oprator | ||
| 131 |